张强

作者: 时间:2024-12-02 点击数:

  张强    兴海副教授

   计算机科学与技术教学系,高光谱遥感中心

     电子邮箱:qzhang95@dlmu.edu.cn

     毕业院校:武汉大学

     通信地址:辽宁省大连市凌海路1

     研究方向:遥感信息处理、计算机视觉、机器学习

     办公室:机电楼501


| 个人简介

张强,1995年生,辽宁大连人,大连海事大学信息科学技术学院兴海副教授,硕士生导师,研究方向为遥感信息处理、计算机视觉与机器学习。主持国家自然科学基金青年项目、中国博士后科学基金面上项目、大连市科技人才创新支持项目、国家重点实验室开放基金等科研项目。在国内外期刊和会议上共发表学术论文30余篇,其中以第一及通讯作者在IEEE TIPIEEE TNNLSIEEE TGRSISPRS P&RSESSDJAG等图像处理/遥感/机器学习/地学领域的顶级期刊上发表SCI论文19篇,含ESI热点论文1篇,ESI高被引论文6篇。谷歌学术总引用2000余次,单篇一作最高被引400余次。担任Remote Sensing期刊客座编辑、国际地学与遥感大会IGARSS分会场主席,以及30余个国际期刊审稿人。先后荣获李小文遥感科学青年奖、大连市青年科技之星、大连市自然科学二等奖(排名2)、大连市高层次人才青年才俊、武汉大学研究生学术创新奖特等奖、王之卓创新人才特等奖等奖项荣誉。更多内容详见个人学术主页:https://qzhang95.github.io

 

招收2025级硕士生3,欢迎计算机科学与技术、数学、软件工程、人工智能、大数据、智能科学与技术、遥感、地信等本科专业的同学报名联系!有意愿者请把简历发至本人邮箱,期待你我能共同成长!

学硕计算机科学与技术 (081200), 注:学硕与专硕的考研专业课程均为计算机专业基础综合 (408)

专硕计算机技术 (085404)软件工程 (085405)人工智能 (085410)大数据技术与工程 (085411)

夏令营优秀营员:推免生可直接录取/考研生可优先录取,由于夏令营的入营名额有限,请提前联系本人

大学生创新创业训练计划:对科研有较大的兴趣, 自我驱动能力较强, 有一定的数学与编程基础

 

| 工作经历

2022.07-至今 大连海事大学,信息科学技术学院,兴海副教授

2023.08-至今 大连海事大学,计算机科学与技术博士后流动站,在职博士后

 

| 教育经历

2019.09-2022.06  武汉大学,测绘遥感信息工程国家重点实验室,摄影测量与遥感专业,博士

2017.09-2019.06  武汉大学,测绘学院,摄影测量与遥感专业,硕士

2013.09-2017.06  武汉大学,测绘学院,测绘工程专业,学士

 

| 讲授课程

1.  本科生课程:《离散数学》,64学时

 

| 研究领域

1. 遥感信息处理(高光谱遥感、多时相遥感、海洋遥感等)

2. 计算机视觉与数字图像处理

3. 机器/深度学习与模式识别


| 期刊论文

注:* 为通讯作者, 期刊分区标准为JCR分区

Q. Zhang, J. Zhu, Y. Dong, E. Zhao, M. Song, and Q. Yuan, “10-minute forest early wildfire detection: Fusing multi-type and multi-source information via recursive transformer,”Neurocomputing, vol. 616, 128963, 2025. (SCI一区)

Q. Zhang, Y. Zheng, Q. Yuan, M. Song, H. Yu, and Y. Xiao, “Hyperspectral image denoising: From model-driven,data-driven, to model-data-driven,” IEEE Transactions on Neural Networks and Learning Systems (TNNLS), pp. 1-21, 2024.(SCI一区Top, ESI高被引论文)

Q. Zhang, Y. Dong, Y. Zheng, H. Yu, M. Song, L. Zhang, and Q. Yuan, “Three-dimension spatial-spectral attention transformer for hyperspectral image denoising,” IEEE Transactions on Geoscience and Remote Sensing (TGRS), vol.62, pp. 1-13, 2024. (SCI一区Top)

L. Li,Q. Zhang*, M. Song, and Chein-I Chang, “Feedback band group and variation low rank sparse model for hyperspectral image anomaly detection,” IEEE Transactions on Geoscience and Remote Sensing (TGRS), vol.62, pp. 1-19, 2024. (SCI一区Top)

C. Yu, M. Xu, Q. Zhang*, and X. Lu, “Dual intervention constrained mask-adversary framework for unsupervised domain adaptation of hyperspectral image classification,” IEEE Geoscience and Remote Sensing Letters (GRSL), vol. 21, pp. 1-5, 2024.  (SCI一区)

C. Yu, H. Li, Y. Hu, Q. Zhang*, M. Song, and Y. Wang, “Frequency-temporal attention network for remote sensing imagery change detection,” IEEE Geoscience and Remote Sensing Letters (GRSL), vol. 21, pp. 1-5, 2024.  (SCI一区)

L. Li, M. Song, Q. Zhang*, and Y. Dong, “Hyperspectral denoising via global variation and local structure low-rank model,” IEEE Transactions on Geoscience and Remote Sensing (TGRS), vol. 61, pp. 1-14, 2023. (SCI一区Top)

Q. Zhang, J. Zhu, Y. Huang, Q. Yuan, and L. Zhang, “Beyond being wise after the event: Combining spatial, temporal and spectral information for Himawari-8 early-stage wildfire detection,” International Journal of Applied Earth Observation and Geoinformation (JAG), vol. 124, 103506, 2023.(SCI一区Top)

Q. Zhang, Y. Dong, Q. Yuan, M. Song, and H. Yu, “Combined deep priors with low-rank tensor factorization for hyperspectral image restoration,” IEEE Geoscience and Remote Sensing Letters (GRSL), vol. 20, pp. 1-5, 2023. (SCI一区)

Q. Zhang, Q. Yuan, M. Song, H. Yu, and L. Zhang, “Cooperated spectral low-rankness prior and deep spatial prior for HSI unsupervised denoising,” IEEE Transactions on Image Processing (TIP), vol. 31, pp. 6356-6368, 2022. (CCF-A, SCI一区Top)

Q. Zhang, Q. Yuan, T. Jin, M. Song, and F. Sun, “SGD-SM 2.0: an improved seamless global daily soil moisture long-term dataset from 2002 to 2022,” Earth System Science Data (ESSD), vol. 14, pp. 4473–4488, 2022. (SCI一区Top)

Q. Zhang, Q. Yuan, J. Li, Y. Wang, F. Sun, and L. Zhang, “Generating seamless global daily AMSR2 soil moisture (SGD-SM) long-term products for the years 2013-2019,” Earth System Science Data (ESSD), vol. 13, pp. 1385-1401, 2021.(SCI一区Top)

Q. Zhang, Q. Yuan, Z. Li, F. Sun, and L. Zhang, “Combined deep prior with low-rank tensor SVD for thick cloud removal in multitemporal images,” ISPRS Journal of Photogrammetry and Remote Sensing (ISPRS P&RS), vol. 177, pp. 161-173, 2021.(SCI一区Top)

Q. Zhang, Q. Yuan, J. Li, F. Sun, and L. Zhang, “Deep spatio-spectral Bayesian posterior for hyperspectral image non-i.i.d. noise removal,” ISPRS Journal of Photogrammetry and Remote Sensing (ISPRS P&RS), vol. 164, pp. 125-137, 2020.(SCI一区Top)

Q. Zhang, Q. Yuan, J. Li, Z. Li, H. Shen, and L. Zhang, “Thick cloud and cloud shadow removal in multitemporal images using progressively spatio-temporal patch group deep learning,” ISPRS Journal of Photogrammetry and Remote Sensing (ISPRS P&RS), vol. 162, pp. 148-160, 2020. (SCI一区Top)

Q. Zhang, Q. Yuan, J. Li, X. Liu, H. Shen, and L. Zhang, “Hybrid noise removal in hyperspectral imagery with spatial-spectral gradient network,” IEEE Transactions on Geoscience and Remote Sensing (TGRS), vol. 57, no. 10, pp. 7317-7329, 2019.(SCI一区Top)

Q. Zhang, Q. Yuan, C. Zeng, X. Li, and Y. Wei, “Missing data reconstruction in remote sensing image with a unified spatial-temporal-spectral deep convolutional neural network,” IEEE Transactions on Geoscience and Remote Sensing (TGRS), vol. 56, no. 8, pp. 4274-4288, 2018. (SCI一区Top, ESI高被引论文)

Q. Zhang, Q. Yuan, J. Li, Z. Yang, and X. Ma, “Learning a dilated residual network for SAR image despeckling,” Remote Sensing (RS), vol. 10, no. 2, 196, 2018. (SCI一区)

Q. Yuan, Q. Zhang, J. Li, H. Shen, and L. Zhang, “Hyperspectral image denoising employing a spatial-spectral deep residual convolutional neural network,” IEEE Transactions on Geoscience and Remote Sensing (TGRS), vol. 57, no. 2, pp. 1205-1218, 2019.(SCI一区Top, ESI高被引论文)

L. Li, M. Song, Q. Zhang, Y. Dong, Y. Wang, and Q. Yuan, “Local extremum constrained total variation model for natural and hyperspectral image non-blind deblurring,” IEEE Transactions on Circuits and Systems for Video Technology (TCSVT), vol. 61, pp. 1-16, 2024. (SCI一区Top)

Y. Xiao, Q. Yuan, K. Jiang, Y. Chen, Q. Zhang, and CW. Lin, “Frequency-assisted mamba for remote sensing image super-resolution,” IEEE Transactions on Multimedia (IEEE TMM), vol. 26, pp. 1-13, 2024. (SCI一区Top)

C. Yu, Y. Zhu, M. Song, Y. Wang, and Q. Zhang, “Unseen feature extraction: Spatial mapping expansion with spectral compression network for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing (TGRS), vol. 62, pp. 1-14, 2024. (SCI一区Top)

W. Zhang, Z. li, G. Li, P. Zhuang, G. Hou, Q. Zhang, and C. Li, “GACNet: Generate adversarial-driven cross-aware network for hyperspectral wheat variety identification,” IEEE Transactions on Geoscience and Remote Sensing (TGRS), vol. 62, pp. 1-15, 2024. (SCI一区Top, ESI热点论文, ESI高被引论文)

E. Zhao, N. Qu, Y. Wang, C. Gao, S. Duan, J. Zeng, and Q. Zhang, “Thermal infrared hyperspectral band selection via graph neural network for land surface temperature retrieval,” IEEE Transactions on Geoscience and Remote Sensing (TGRS), vol. 62, pp. 1-15, 2024. (SCI一区Top)

Y. Xiao, Q. Yuan, Q. Zhang, and L. Zhang, “Deep blind super-resolution for satellite video,” IEEE Transactions on Geoscience and Remote Sensing (TGRS), vol. 61, pp. 1-16, 2023. (SCI一区Top, ESI高被引论文)

H. Yang, H. Yu, K. Zheng, J. Hu, T. Tao, and Q. Zhang, “Hyperspectral image classification based on interactive transformer and CNN with multilevel feature fusion network,” IEEE Geoscience and Remote Sensing Letters (GRSL), vol. 20, pp. 1-5, 2023. (SCI一区)

Y. Xiao, Q. Yuan, J. He, Q. Zhang, J. Sun, X. Su, J. Wu and L. Zhang, “Space-time super-resolution for satellite video: A joint framework based on multi-scale spatial-temporal transformer,” International Journal of Applied Earth Observation and Geoinformation (JAG), vol. 108, 102731, 2022.(SCI一区Top, ESI高被引论文)

W. Zhang, Z. Li, H. Sun, Q. Zhang, P. Zhuang, and C. Li, “SSTNet: Spatial, spectral, and texture aware attention network using hyperspectral image for corn variety identification,” IEEE Geoscience and Remote Sensing Letters (GRSL), vol. 19, pp. 1-5, 2022. (SCI一区)

J. Lin, T. Huang, X. Zhao, Y. Chen, Q. Zhang, and Q. Yuan, “Robust thick cloud removal for multi-temporal remote sensing images using coupled tensor factorization,” IEEE Transactions on Geoscience and Remote Sensing (TGRS), vol. 60, pp. 1-16, 2022. (SCI一区Top)

 

| 会议论文

J. Zhu, Q. Zhang*, and Y. Zheng, “Forest early wildfire detection via multi-source and multi-type information fusion,” Proceeding of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), in Athens, Greece, 2024. (EI, Poster)

Q. Zhang, and J. Zhu, “Early wildfire detection based on temporal, spatial and spectral information fusion,” Proceeding of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), in Pasadena, USA, 2023. (EI, Poster)

Q. Zhang, F. Sun, Q. Yuan, and L. Zhang, “Thick cloud removal for Sentinel-2 time-series images via combining deep prior and low-rank tensor completion,” Proceeding of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), in Brussels, Belgium, pp. 2675-2678, 2021. (EI, Oral)

Q. Zhang, F. Sun, Q. Yuan, J. Li, H. Shen, and L. Zhang, “Combined the data-driven with model-driven stragegy: A novel framework for mixed noise removal in hyperspectral image,” Proceeding of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), in Hawaii, USA, pp. 2667-2670, 2020. (EI, Oral)

Q. Zhang, Q. Yuan, J. Li, H. Shen, and L. Zhang, “Cloud and shadow removal for Sentinel-2 by progressively spatiotemporal patch group learning,” Proceeding of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), in Yakohama, Japan, pp. 775-778, 2019. (EI, Oral)

Q. Zhang, Q. Yuan, H. Shen, and L. Zhang, “A unified spatial-temporal-spectral learning framework for reconstructing missing data in remote sensing images,” Proceeding of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), in Valencia, Spain, pp. 4981-4984, 2018. (EI, Poster)

Y. Zhu, C. Yu, M. Song, Y. Wang, E. Zhao, H. Yu, and Q. Zhang, “Center category focusing transformer network for hyperspectral image classification,” Proceeding of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), in Athens, Greece, 2024. (EI, Poster)

Y. Yang, Y. Wang, E. Zhao, M. Song, and Q. Zhang, “A SWIN transformer-based fusion approach for hyperspectral image super-resolution,” Proceeding of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), in Pasadena, USA, 2023. (EI, Poster)

 

| 科研项目

1.  国家自然科学基金青年项目, 数模联合驱动的国产高光谱卫星影像混合噪声去除研究, 62401095, 2025-2027, 主持

2.  中国博士后科学基金面上项目, 联合时--谱一体化信息的遥感影像去云研究, 2023M740460, 2024-2025, 主持

3.  大连市科技人才创新支持项目(大连市青年科技之星), 遥感信息处理与应用, 202512096, 2025-2026, 主持

4.  遥感科学国家重点实验室开放基金, 高光谱遥感影像自监督去噪研究, OFSLRSS202301, 2023-2025, 主持

5.  中央高校基本科研业务费, 面向全天候任务的多源遥感信息融合研究, 3132024262, 2024-2024, 主持

6.  中央高校基本科研业务费, 遥感高时--谱一体化信息融合研究, 3132023262, 2023-2023, 主持

7.  大连海事大学人才启动经费, 兴海副教授高层次引进人才项目, 02500363, 2022-2025, 主持

 

| 专利成果

1.  张强, 朱健, 董羽帅, 宋梅萍. 发明专利:基于时空谱信息融合的早期火点探测方法, 申请号:202211486158.5

2.  张强, 董羽帅, 郑亚明, 于浩洋, 宋梅萍, 王玉磊. 发明专利:一种耦合深度先验和低秩张量分解的高光谱遥感影像去噪方法,申请号:202211449281.X

 

| 学生培养

2022级硕士生:董羽帅 (IEEE TGRS 1篇、IEEE GRSL 1, 研究生国家奖学金、优秀研究生)郑亚明 (IEEE TNNLS 1, 招商轮船奖学金、优秀研究生)朱健 (JAG 1篇、Neurocomputing 1, 优秀研究生)

2023级硕士生:刘子枫、王琪、张显鹏

2024级硕士生:谢宏杰、刘博、高文静、张宝墨

2025级硕士生:报名招生中...

 

| 学术兼职

1.  Remote Sensing期刊, 客座编辑

2.  2023年全国热红外遥感大会, 组织委员会委员

3.  2021年国际地学与遥感大会, 分会场主席

4.  国际电气与电子工程师协会 (IEEE), 会员

5.  中国图象图形学学会, 会员

6.  中国图象图形学学会遥感图像专业委员会, 委员

7.  IEEE TIP/TNNLS/TII/TCSVT/TGRS /IJCV/RSE/ISPRS P&RS/INF FUS30余个SCI期刊, 审稿人

 

| 奖项荣誉

2024, 大连市青年科技之星

2024, 大连市自然科学二等奖(排名2

2024, 指导硕士生董羽帅获研究生国家奖学金

2023, 指导硕士生郑亚明获招商轮船奖学金

2023, 大连市高层次人才青年才俊

2022, 大连海事大学“兴海”高层次人才

2022, 武汉大学十大杰出青年(学生)

2022, 武汉大学优秀毕业研究生

2021, 李小文遥感科学青年奖

2021, 博士研究生国家奖学金

2021, 全国成像光谱对地观测研讨会优秀报告奖

2020, 武汉大学研究生学术创新奖特等奖(校长奖)

2020, 王之卓创新人才奖特等奖

2020, 中国大学生自强之星

2018, 硕士研究生国家奖学金

 

| 招生信息


招生类型

专业代码

招生专业

招生说明

硕士生

学术型

081200

计算机科学与技术

每年招收硕士研究生3,有意愿者需提前发简历至邮箱qzhang95@dlmu.edu.cn, 更多情况详见个人学术主页:https://qzhang95.github.io

083500

软件工程

专业型

085404

计算机技术

085405

软件工程

085410

人工智能

085411

大数据技术与工程

085412

网络与信息安全

 

版权所有:大连海事大学信息科学技术学院

地址: 大连海事大学电航楼.